α-synuclein-lanthanide metal ions interaction: binding sites, conformation and fibrillation
نویسندگان
چکیده
BACKGROUND The pathological hallmark of Parkinson's disease is the deposition of cytoplasmic neuronal inclusions termed Lewy bodies. The major component of Lewy bodies is amyloid fibrils of α-synuclein. To investigate what causes α-synuclein aggregation is essential to understand its pathological roles in Parkinson's disease. Various metal ions, including iron and copper, have been implicated in the pathogenesis of Parkinson's disease. Divalent metal ions can regulate α-synuclein fibrillation rate, however, few studies have been performed to investigate how trivalent metal ions interact with α-synuclein and their effect on α-synuclein fibrillation. The study of the interaction between divalent and trivalent metal ions with α-synuclein is of vital importance to realize the mechanism of α-synuclein fibrillation. RESULTS Here we used nuclear magnetic resonance spectroscopy to determine the trivalent metal ions (lanthanides) binding sites in α-synuclein. We found that lanthanide metal ions not only bind non-specifically to the C-terminal domain of α-synuclein, but also transiently interact with residues contain carboxyl groups in the N-terminal and NAC regions, the latter binding sites were not found for divalent cations. In addition, lanthanide ions bound α-synuclein exhibits slower conformational exchange rate. Compare to divalent cations, lanthanide ions accelerate α-synuclein fibrillation much faster. CONCLUSIONS We identified the lanthanide metal ions binding sites in α-synuclein and found a hierarchal effect for lanthanide ions binding to α-synuclein, driven by the interaction with aspartic acids and glutamic acids residues. Lanthanide ions binding also induced conformational dynamics change of α-synuclein. Compared to divalent cations, lanthanide metal ions significantly accelerated α-synuclein fibrillation, possibly due to the different inherent properties such as charge, binding sites and coordination modes.
منابع مشابه
Structural basis behind the interaction of Zn²⁺ with the protein α-synuclein and the Aβ peptide: a comparative analysis.
α-Synuclein (AS) aggregation is associated to neurodegeneration in Parkinson's disease (PD). At the same time, alterations in metal ion homeostasis may play a pivotal role in the progression of AS amyloid assembly and the onset of PD. Elucidation of the structural basis directing AS-metal interactions and their effect on AS aggregation constitutes a key step towards understanding the role of me...
متن کاملMetal ions binding study on human growth hormone by isothermal titration calorimetric method
The interaction of hGH with some metal ions ( ) at 27°C in NaC1 solution, 50 mM was studied using Isothermal titration calorimetry. There is a set of three identical and non-interacting binding sites for binding of all these metal ions, expect . The intrinsic association equilibrium constants () are not very different for and , and also their molar enthalpies of binding (KJ/mol for and KJ/mo...
متن کاملClioquinol-induced ordered conformational behavior in alpha-synuclein: promising relevance for therapeutic approach to Parkinson's disease
Parkinson?¦s disease (PD) is a devastating and an intricate complex neurological disorder that results from the progressive degeneration of nerve cells in Substantia nigra that controls movement. The pathological hallmark of PD is the formation of insoluble protein aggregates known as lewey bodies. Alpha-synuclein is the major constituent of these fibrillar structures. Alpha-synuclein a 140 ami...
متن کاملClioquinol-induced ordered conformational behavior in alpha-synuclein: promising relevance for therapeutic approach to Parkinson's disease
Parkinson?¦s disease (PD) is a devastating and an intricate complex neurological disorder that results from the progressive degeneration of nerve cells in Substantia nigra that controls movement. The pathological hallmark of PD is the formation of insoluble protein aggregates known as lewey bodies. Alpha-synuclein is the major constituent of these fibrillar structures. Alpha-synuclein a 140 ami...
متن کاملIon-exchange in melanin: an electron spin resonance study with lanthanide probes.
Changes are induced in the electron spin resonance signal amplitude and microwave power saturation of the naturally occurring free radical in melanin by bound paramagnetic ions. The changes serve as experimental observables in competition experiments between diamagnetic and paramagnetic metal ions for melanin binding sites and between melanin and ethylenediaminetetraacetic acid for paramagnetic...
متن کامل